Code No. : 13113 O2

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (CBCS) III-Semester Backlog (Old) Examinations, December-2018

Engineering Mathematics-III

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE questions from Part-B

Part-A (10 × 2=20 Marks)

- 1. State the conditions under which a given function can be expanded in Fourier series.
- 2. Find the value of a_0 in the Fourier expansion of the function $f(x) = \begin{cases} 1+t, -1 \le t \le 0\\ 1-t, 0 \le t \le 1 \end{cases}$
- 3. Deduce the Partial differential equation by elimination of the arbitrary constants

a and b from the equation $z = axe^y + \frac{1}{2}a^2e^{2y} + b$

4. Explore the solution of the partial differential equation $p - q = \frac{z}{x+y}$

- 5. Establish the relation between the operators (i) \triangle and E (ii) ∇ and E^{-1}
- 6. By choosing an appropriate Interpolation formula, construct a second degree polynomial for the following data: (1,3),(2,5),(3,10).
- 7. Write any four properties of the Normal Distribution.

8. Prove that E(X + Y) = E(X) + E(Y)

- 9. The equations of two regression lines obtained in a correlation analysis are 3x + 2y = 26 and 6x + y = 31. Find (i) the correlation coefficient r, and (ii) The mean values of x and y
- 10. Show that the limits of correlation coefficient r are $-1 \le r \le +1$

Part-B (5 × 10=50 Marks)

11. a) Expand the function $f(x) = \left(\frac{\pi - x}{2}\right)^2$ in $0 \le x \le 2\pi$

- b) Find the half range sine and cosine series of f(x) = x, in 0 < x < 2 [5]
- 12. a) Solve the differential equation $z^2(p^2z^2 + q^2) = 1$
 - b) Solve the partial differential equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ for the conduction of heat along the rod without radiation, subject to the following conductions

(i) *u* is not infinite for $t \to \infty$ (ii) $\frac{\partial u}{\partial x} = 0$ for x = 0 and x = l(iii) $u(x, 0) = lx - x^2$ for t = 0, between x = 0 & x = l

[5]

[4]

[6]

	v	21	15	12	10	111 - and the state of the state of the state of the				
	Obtain the distance travelled in 4 seconds and acceleration at the end of 4 seconds.									
b)	Obtain the approximate value of y at $x = 1$ in steps of 0.2 by Euler's method give									
						$\frac{dy}{dx} = xy \text{ and } y(0) = 2,$				
14. a)) If the p.d. f. $f(x) = k(x + 3)in$ (2,8), determine the value of k and									
	(i)	P(3	< x	< 5)	, (ii)	$P(x \ge 4)$				
b)	Derive the mean and Variance of Normal distribution.									
15. a)	If θ is the angle between the two regression lines in the case of two variables x and y,									
	Show that $tan\theta = \left(\frac{1-r^2}{r}\right) \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}$, and interpret the result for different values of θ .									
b)	Calculate the coefficient of correlation and obtain the least square regression lines for the following data:									
1	x	1	2	3 4	5					
1	y	2	5	3 8	7					
16. a)	Fir	d the	e For	urier	serie	s for the function $f(x) = \begin{cases} x, & 0 < x < 1 \\ 2 - x, & 1 < x < 2 \end{cases}$	[5]			

b) Solve the partial differential equation $2(z + xp + yq) = yp^2$ by Charpit's method. [5]

17. Answer any *two* of the following:

3

t 0 4

Determine y'(0) and y''(0) for the following data: a)

x	0	1	2	3	4	5	
y	4	8	15	7	6	2	

- [5] The marks X obtained in mathematics by 1000 students is normally distributed with b) mean 78% and standard deviation 11%. Determine (i) How many students got marks above 90%? (ii) What was the highest mark obtained by the lowest 10% of students?
- The following table gives the number of aircraft accidents that occurred during the c) [5] various days of the week. Find whether the accidents are uniformly distributed over the week.

Day	Sun	Mon	Tue	Wed	Thu	Fri	Sat
No. of accidents	14	16	8	12	11	9	14

13. a) A body is moving with velocity v at any given time t and satisfies the following data [5]

14

[5]